Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Les sujets
Type de document
Gamme d'année
1.
Archives of Disease in Childhood ; 108(6):A7-A8, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2322408

Résumé

IntroductionFavipiravir selectively inhibits RNA polymerase responsible for single-stranded viral replication. It is licensed for treating influenza and repurposed to treat other diseases such as Ebola and COVID-19. It is metabolised by hepatic aldehyde oxidase (AO) and is an AO inhibitor with complex pharmacokinetics. We have used favipiravir, in combination with other antivirals, in severely immunocompromised children with life-threatening RNA virus infections. As an unlicensed indication, favipiravir pharmacokinetics were routinely monitored at our institution. Population pharmacokinetic model is used to describe the favipiravir pharmacokinetic properties, drug exposure and sources of variability in these children.MethodsRoutine favipiravir plasma levels of 9 patients (0.8–11yrs, mean age=5.3yrs;median weight=15kg) were analysed retrospectively (62 samples). All patients received favipiravir 200mg or 400mg tds and had at least one plasma level 45min (peak), 3h and 8h (trough) post-dose. Parameter estimation and model simulation properties (visual predictive check) were assessed using R language (v 4.1.2) and RStudio (2022.02.0+443).ResultsA one-compartment model with weight as covariate best describes the data, with (1) elimination clearance=1L/h and volume of distribution=7.54L, both allometric scaled centring at median weight, and (2) estimated t1/2=5.17h with Cmax = 24µg/mL at 200mg and 41µg/mL at 400mg.ConclusionsTo our knowledge this is the first report of favipiravir pharmacokinetic parameters in infants and young children. Weight significantly improves the model fit as a covariate. Reported EC50 for norovirus in vitro was 19–39µg/mL and enterovirus 71 was 23µg/mL, indicating higher favipiravir doses or combination with other antivirals are required.

2.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article Dans Anglais | MEDLINE | ID: covidwho-1785754

Résumé

Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host's nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway's efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates "NAM drain", cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. "NAM drain" compromises the NAD+ salvage pathway's fail-safe function. The robustness of the host's NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.


Sujets)
COVID-19 , Acide nicotinique , Pellagre , Humains , NAD/métabolisme , Acide nicotinique/pharmacologie , Nicotinamide/métabolisme , Pellagre/traitement médicamenteux , Pellagre/étiologie , SARS-CoV-2
SÉLECTION CITATIONS
Détails de la recherche